skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stoll, Heather"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The rate and consequences of future high latitude ice sheet retreat remain a major concern given ongoing anthropogenic warming. Here, new precisely dated stalagmite data from NW Iberia provide the first direct, high-resolution records of periods of rapid melting of Northern Hemisphere ice sheets during the penultimate deglaciation. These records reveal the penultimate deglaciation initiated with rapid century-scale meltwater pulses which subsequently trigger abrupt coolings of air temperature in NW Iberia consistent with freshwater-induced AMOC slowdowns. The first of these AMOC slowdowns, 600-year duration, was shorter than Heinrich 1 of the last deglaciation. Although similar insolation forcing initiated the last two deglaciations, the more rapid and sustained rate of freshening in the eastern North Atlantic penultimate deglaciation likely reflects a larger volume of ice stored in the marine-based Eurasian Ice sheet during the penultimate glacial in contrast to the land-based ice sheet on North America as during the last glacial. 
    more » « less
  2. null (Ed.)
    Throughout Earth's history, CO 2 is thought to have exerted a fundamental control on environmental change. Here we review and revise CO 2 reconstructions from boron isotopes in carbonates and carbon isotopes in organic matter over the Cenozoic—the past 66 million years. We find close coupling between CO 2 and climate throughout the Cenozoic, with peak CO 2 levels of ∼1,500 ppm in the Eocene greenhouse, decreasing to ∼500 ppm in the Miocene, and falling further into the ice age world of the Plio–Pleistocene. Around two-thirds of Cenozoic CO 2 drawdown is explained by an increase in the ratio of ocean alkalinity to dissolved inorganic carbon, likely linked to a change in the balance of weathering to outgassing, with the remaining one-third due to changing ocean temperature and major ion composition. Earth system climate sensitivity is explored and may vary between different time intervals. The Cenozoic CO 2 record highlights the truly geological scale of anthropogenic CO 2 change: Current CO 2 levels were last seen around 3 million years ago, and major cuts in emissions are required to prevent a return to the CO 2 levels of the Miocene or Eocene in the coming century. ▪  CO 2 reconstructions over the past 66 Myr from boron isotopes and alkenones are reviewed and re-evaluated. ▪  CO 2 estimates from the different proxies show close agreement, yielding a consistent picture of the evolution of the ocean-atmosphere CO 2 system over the Cenozoic. ▪  CO 2 and climate are coupled throughout the past 66 Myr, providing broad constraints on Earth system climate sensitivity. ▪  Twenty-first-century carbon emissions have the potential to return CO 2 to levels not seen since the much warmer climates of Earth's distant past. 
    more » « less
  3. null (Ed.)
  4. Membrane permeabilities to CO2and HCO3constrain the function of CO2concentrating mechanisms that algae use to supply inorganic carbon for photosynthesis. In diatoms and green algae, plasma membranes are moderately to highly permeable to CO2but effectively impermeable to HCO3. Here, CO2and HCO3membrane permeabilities were measured using an18O‐exchange technique on two species of haptophyte algae,Emiliania huxleyiandCalcidiscus leptoporus, which showed that the plasma membranes of these species are also highly permeable to CO2(0.006–0.02 cm · s−1) but minimally permeable to HCO3. Increased temperature and CO2generally increased CO2membrane permeabilities in both species, possibly due to changes in lipid composition or CO2channel proteins. Changes in CO2membrane permeabilities showed no association with the density of calcium carbonate coccoliths surrounding the cell, which could potentially impede passage of compounds. Haptophyte plasma‐membrane permeabilities to CO2were somewhat lower than those of diatoms but generally higher than membrane permeabilities of green algae. One caveat of these measurements is that the model used to interpret18O‐exchange data assumes that carbonic anhydrase, which catalyzes18O‐exchange, is homogeneously distributed in the cell. The implications of this assumption were tested using a two‐compartment model with an inhomogeneous distribution of carbonic anhydrase to simulate18O‐exchange data and then inferring plasma‐membrane CO2permeabilities from the simulated data. This analysis showed that the inferred plasma‐membrane CO2permeabilities are minimal estimates but should be quite accurate under most conditions. 
    more » « less